64 research outputs found

    TBX3 over-expression causes mammary gland hyperplasia and increases mammary stem-like cells in an inducible transgenic mouse model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The T-box transcription factor TBX3 is necessary for early embryonic development and for the normal development of the mammary gland. Homozygous mutations, in mice, are embryonic lethal while heterozygous mutations result in perturbed mammary gland development. In humans, mutations that result in the haploinsufficiency of TBX3 causes Ulnar Mammary Syndrome (UMS) characterized by mammary gland hypoplasia as well as other congenital defects. In addition to its role in mammary gland development, various studies have also supported a role for Tbx3 in breast cancer development. TBX3 is over-expressed in various breast cancer cell lines as well as cancer tissue and has been found to contribute to breast cancer cell migration. Previous studies have suggested that TBX3 contributes to cancer development by its ability to bypass senescence by repressing the expression of p14<sup>ARF</sup>-tumor suppressor. Although many studies have shown that a dysregulation of TBX3 expression may contribute to cancer progression, no direct evidence shows TBX3 causes breast cancer.</p> <p>Results</p> <p>In this study, we created doxycycline inducible double transgenic mice (MMTV-rtTA;tet-myc-TBX3-IRES-Luciferase) to test whether TBX3 over-expression can induce tumor formation within the mammary gland. Although over-expression of TBX3, alone, did not induce tumor formation it did promote accelerated mammary gland development by increasing mammary epithelial cell proliferation. We also show that TBX3 directly binds to and represses <it>NFκBIB</it>, an inhibitor of the NF-κB pathway known to play a role in regulating cell proliferation. Lastly, we also show that the over-expression of TBX3 is associated with an increase in mammary stem-like cells.</p> <p>Conclusions</p> <p>Overall, our data suggests that over-expression of TBX3 may contribute to breast cancer development by promoting accelerated mammary gland development through the inhibition of the NF-κB pathway and stimulation of both mammary epithelial cell and stem-like cell proliferation.</p

    Determining the absolute requirement of G protein-coupled receptor kinase 5 for pathological cardiac hypertrophy: short communication.

    Get PDF
    RATIONALE: Heart failure (HF) is often the end phase of maladaptive cardiac hypertrophy. A contributing factor is activation of a hypertrophic gene expression program controlled by decreased class II histone deacetylase (HDAC) transcriptional repression via HDAC phosphorylation. Cardiac-specific overexpression of G proteinen-coupled receptor kinase-5 (GRK5) has previously been shown to possess nuclear activity as a HDAC5 kinase, promoting an intolerance to in vivo ventricular pressure overload; however, its endogenous requirement in adaptive and maladaptive hypertrophy remains unknown. OBJECTIVE: We used mouse models with global or cardiomyocyte-specific GRK5 gene deletion to determine the absolute requirement of endogenous GRK5 for cardiac hypertrophy and HF development after chronic hypertrophic stimuli. METHODS AND RESULTS: Mice with global deletion of GRK5 were subjected to transverse aortic constriction. At 12 weeks, these mice showed attenuated hypertrophy, remodeling, and hypertrophic gene transcription along with preserved cardiac function. Global GRK5 deletion also diminished hypertrophy and related gene expression due to chronic phenylephrine infusion. We then generated mice with conditional, cardiac-specific deletion of GRK5 that also demonstrated similar protection from pathological cardiac hypertrophy and HF after transverse aortic constriction. CONCLUSIONS: These results define myocyte GRK5 as a critical regulator of pathological cardiac growth after ventricular pressure overload, supporting its role as an endogenous (patho)-physiological HDAC kinase. Further, these results define GRK5 as a potential therapeutic target to limit HF development after hypertrophic stress

    Vitamin D receptor gene polymorphisms and prognosis of breast cancer among African-American and Hispanic women.

    Get PDF
    BackgroundVitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR). Although African-Americans have the lowest levels of serum vitamin D, there is a dearth of information on VDR gene polymorphisms and breast cancer among African-Americans and Hispanics. This study examines whether VDR gene polymorphisms are associated with breast cancer in these cohorts.MethodsBlood was collected from 232 breast cancer patients (Cases) and 349 non-cancer subjects (Controls). Genotyping for four polymorphic variants of VDR (FokI, BsmI, TaqI and ApaI) was performed using the PCR-RFLP method.ResultsAn increased association of the VDR-Fok1 f allele with breast cancer was observed in African-Americans (OR = 1.9, p = 0.07). Furthermore, the FbTA, FbtA and fbtA haplotypes were associated with breast cancer among African-Americans (p&lt;0.05). Latinas were more likely to have the VDR-ApaI alleles (Aa or aa) (p = 0.008). The VDR-ApaI aa genotype was significantly associated with poorly-differentiated breast tumors (p = 0.04) in combined Cases. Kaplan-Meier survival analysis showed decreased 5-year disease-free-survival (DFS) in breast cancer patients who had the VDR-Fok1 FF genotype (p&lt;0.05). The Cox regression with multivariate analysis revealed the independent predictor value of the VDR-FokI polymorphism for DFS. The other three variants of VDR (BsmI, TaqI and ApaI) were not associated with disease outcome.ConclusionsVDR haplotypes are associated with breast cancer in African-Americans, but not in Hispanic/Latinas. The VDR-FokI FF genotype is linked with poor prognosis in African-American women with breast cancer

    Loss of αT-catenin alters the hybrid adhering junctions in the heart and leads to dilated cardiomyopathy and ventricular arrhythmia following acute ischemia.

    Get PDF
    It is generally accepted that the intercalated disc (ICD) required for mechano-electrical coupling in the heart consists of three distinct junctional complexes: adherens junctions, desmosomes and gap junctions. However, recent morphological and molecular data indicate a mixing of adherens junctional and desmosomal components, resulting in a \u27hybrid adhering junction\u27 or \u27area composita\u27. The α-catenin family member αT-catenin, part of the N-cadherin-catenin adhesion complex in the heart, is the only α-catenin that interacts with the desmosomal protein plakophilin-2 (PKP2). Thus, it has been postulated that αT-catenin might serve as a molecular integrator of the two adhesion complexes in the area composita. To investigate the role of αT-catenin in the heart, gene targeting technology was used to delete the Ctnna3 gene, encoding αT-catenin, in the mouse. The αT-catenin-null mice are viable and fertile; however, the animals exhibit progressive cardiomyopathy. Adherens junctional and desmosomal proteins were unaffected by loss of αT-catenin, with the exception of the desmosomal protein PKP2. Immunogold labeling at the ICD demonstrated in the αT-catenin-null heart a preferential reduction of PKP2 at the area composita compared with the desmosome. Furthermore, gap junction protein Cx43 was reduced at the ICD, including its colocalization with N-cadherin. Gap junction remodeling in αT-catenin-knockout hearts was associated with an increased incidence of ventricular arrhythmias after acute ischemia. This novel animal model demonstrates for the first time how perturbation in αT-catenin can affect both PKP2 and Cx43 and thereby highlights the importance of understanding the crosstalk between the junctional proteins of the ICD and its implications for arrhythmogenic cardiomyopathy

    C1q/tumor necrosis factor-related protein-3, a newly identified adipokine, is a novel antiapoptotic, proangiogenic, and cardioprotective molecule in the ischemic mouse heart.

    Get PDF
    BACKGROUND: Obesity and diabetes mellitus adversely affect postischemic heart remodeling via incompletely understood mechanisms. C1q/tumor necrosis factor-related protein-3 (CTRP3) is a newly identified adipokine exerting beneficial metabolic regulation, similar to adiponectin. The aim of the present study was to determine whether CTRP3 may regulate postischemic cardiac remodeling and cardiac dysfunction, and, if so, to elucidate the underlying mechanisms. METHODS AND RESULTS: Male adult mice were subjected to myocardial infarction (MI) via left anterior descending coronary artery occlusion. Both the effect of MI on endogenous CTRP3 expression/production and the effect of exogenous CTRP3 (adenovirus or recombinant CTRP3) replenishment on MI injury were investigated. MI significantly inhibited adipocyte CTRP3 expression and reduced the plasma CTRP3 level, reaching a nadir 3 days after MI. CTRP3 replenishment improved survival rate (P CONCLUSION: CTRP3 is a novel antiapoptotic, proangiogenic, and cardioprotective adipokine, the expression of which is significantly inhibited after MI

    Orphan Nuclear Receptor Nur77 Inhibits Cardiac Hypertrophic Response to Beta-Adrenergic Stimulation.

    Get PDF
    The orphan nuclear receptor Nur77 plays critical roles in cardiovascular diseases, and its expression is markedly induced in the heart after beta-adrenergic receptor (β-AR) activation. However, the functional significance of Nur77 in β-AR signaling in the heart remains unclear. By using Northern blot, Western blot, and immunofluorescent staining assays, we showed that Nur77 expression was markedly upregulated in cardiomyocytes in response to multiple hypertrophic stimuli, including isoproterenol (ISO), phenylephrine (PE), and endothelin-1 (ET-1). In a time- and dose-dependent manner, ISO increases Nur77 expression in the nuclei of cardiomyocytes. Overexpression of Nur77 markedly inhibited ISO-induced cardiac hypertrophy by inducing nuclear translocation of Nur77 in cardiomyocytes. Furthermore, cardiac overexpression of Nur77 by intramyocardial injection of Ad-Nur77 substantially inhibited cardiac hypertrophy and ameliorated cardiac dysfunction after chronic infusion of ISO in mice. Mechanistically, we demonstrated that Nur77 functionally interacts with NFATc3 and GATA4 and inhibits their transcriptional activities, which are critical for the development of cardiac hypertrophy. These results demonstrate for the first time that Nur77 is a novel negative regulator for the β-AR-induced cardiac hypertrophy through inhibiting the NFATc3 and GATA4 transcriptional pathways. Targeting Nur77 may represent a potentially novel therapeutic strategy for preventing cardiac hypertrophy and heart failure

    GSK-3alpha directly regulates beta-adrenergic signaling and the response of the heart to hemodynamic stress in mice.

    Get PDF
    The glycogen synthase kinase-3 (GSK-3) family of serine/threonine kinases consists of 2 highly related isoforms, alpha and beta. Although GSK-3beta has an important role in cardiac development, much remains unknown about the function of either GSK-3 isoform in the postnatal heart. Herein, we present what we believe to be the first studies defining the role of GSK-3alpha in the mouse heart using gene targeting. Gsk3a(-/-) mice over 2 months of age developed progressive cardiomyocyte and cardiac hypertrophy and contractile dysfunction. Following thoracic aortic constriction in young mice, we observed enhanced hypertrophy that rapidly transitioned to ventricular dilatation and contractile dysfunction. Surprisingly, markedly impaired beta-adrenergic responsiveness was found at both the organ and cellular level. This phenotype was reproduced by acute treatment of WT cardiomyocytes with a small molecule GSK-3 inhibitor, confirming that the response was not due to a chronic adaptation to LV dysfunction. Thus, GSK-3alpha appears to be the central regulator of a striking range of essential processes, including acute and direct positive regulation of beta-adrenergic responsiveness. In the absence of GSK-3alpha, the heart cannot respond effectively to hemodynamic stress and rapidly fails. Our findings identify what we believe to be a new paradigm of regulation of beta-adrenergic signaling and raise concerns given the rapid expansion of drug development targeting GSK-3
    corecore